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Abstract. We examine the anomalous behavior of the transmittance through a one-dimensional ring having
two branches of different lengths, as determined by the lead positions. Jumps in the transmittance phase
are occurring in correspondence to both (a) zeros in the transmission at the eigenstates of the isolated
ring and (b) destructive interference events. It is also found that when the ratio of the branch lengths is
given by p/q satisfying p + q = 0 (mod 4), the two characteristic zeros merge into a single point and the
transmittance phase becomes identical to the so-called Friedel phase.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 11.30.Er Charge conjugation, parity, time reversal, and other
discrete symmetries – 03.65.-w Quantum mechanics – 05.60.-k Transport processes

Introduction

Recent experiments by Yacoby et al. [1] and by Schuster
et al. [2] have attracted much interest into phase-sensitive
transport. In these measurements, when sweeping the
gate voltage, the relative phase between incoming and
outgoing waves traversing a quantum dot was found to
increase smoothly by π while crossing the transmission
resonances (the latter being well described by the Breit-
Wigner formula [3]). Additionally, the zeros in the trans-
mission are also accompanied by an even more intrigu-
ing phase feature, as the phase abruptly changes by π [2].
Several theoretical studies [4–6] have been successful in
describing the observed effects.

When studying the transmittance properties for var-
ious scatterers, reflection- and time-reversal-symmetry
have been intensively discussed, but less attention has
been paid to the influence of the lead positions on the
transmittance. This paper intends to explore a ring struc-
ture having two branches of different lengths (see Fig. 1)
determined by the lead positions. Such a system, provid-
ing distinct transmission zeros and an interesting associ-
ated phase behavior, is already a theoretically interest-
ing fundamental problem by its own. Nevertheless, recent
electron transport experiments suggest that the applica-
tion of these ideas is already in sight. By making use of
scanning tunnelling microscope (STM) tips enhanced by
the attachment of fragments of carbon nanotubes (CNTs),
Watanabe et al. [7] have managed to contact a CNT ring
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Fig. 1. A schematic view of a ring of N = 16 sites, with the
same branch lengths (a) and with different lengths (b). Differ-
ent configurations are classified by the length ratio κ = �1/�2.
Note that κ and κ−1 correspond to equivalent configurations.

to two CNT-STM tips. Their measurements clearly show
the possibility of scanning the surface of the ring in a wide
range of configurations other than the symmetric probing.

General definitions

In order to concentrate on the basic physical features that
the ring topology offers, we investigate here the transport
properties of a one-dimensional ring by means of the scat-
tering matrix S relating the incoming and outgoing states(

out
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)
= S

(
in
in’

)
, (1)

with

S =
(

r t′
t r′

)
= eiϑ

(
ieiϕ1 sinφ eiϕ2 cosφ
e−iϕ2 cosφ ie−iϕ1 sin φ

)
. (2)
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Let us simplify the situation by considering a system with
time-reversal and reflection-symmetry, i.e., t = t′ and
r = r′, leading to ϕ1,2 = 0 [8]. The remaining quantities,
ϑ and φ, depend on the incident particle energy as well
as the scatterer states, however we omit this dependence
for notational simplicity. The transmittance coefficient can
be expressed by its modulus and phase as t = |t|eiϑt . If
the corresponding transmission, |t|2, is non-zero, ϑt must
be a continuous function of the energy and is equivalent
to ϑ up to an additive constant (which we assume to be
zero in what follows). However, when the system under-
goes a transmission zero in association with a sign change
of cosφ, the transmittance phase ϑt exhibits a discontinu-
ity (a π jump), implying the relation

ϑt = ϑ + πΘ(− cosφ), (3)

with Θ being the Heaviside function (Θ(x) = 1 if x > 0
and Θ(x) = 0 otherwise). Another phase of importance in
scattering problems is the so-called Friedel phase [9],

ϑF =
1
2i

ln detS = ϑ +
π

2
· (4)

While ϑ and ϑF are not directly observable, the transmit-
tance phase ϑt is the one being detected in experiments.
Its behavior, dependent on the lead configuration, is our
main concern throughout this paper.

Asymmetric lead configuration

So far, the above mentioned effects have been considered
only for symmetric lead configurations, as shown in Fig-
ure 1a. Here, we are concerned with the general situation
in which the leads contact a one-dimensional ring at differ-
ent, not necessarily antipodal positions, see Figure 1b. As
shown below, by breaking the positional lead symmetry
in this way, our system may display zeros in the transmis-
sion being forbidden in the symmetric case; in correspon-
dence to these zeros, the transmittance phase undergoes π
jumps. Moreover, under the effect of a particular symme-
try (see below), two neighboring zeros in the transmission
can get closer and closer, and eventually coincide. In such
a case, two π jumps can occur at a single point and can-
cel each other, leaving the transmittance phase effectively
unchanged [11]. Another situation in a system with asym-
metric probing might arise when a π jump does not occur
due to the sign change in cosφ, but simply due to a dis-
continuity in ϑ.

System

Our system is an N site ring, eventually considered in
the mesoscopic limit 1 � N < ∞, as shown in Figure 1.
We can write down the ring Hamiltonian as (Hring)ij =
ε0δij − γ(δij+1 + δij−1) with ε0 and γ being the uni-
form site energy and hopping strength, respectively. The
eigenenergies can be obtained by the secular equation

det[εI − Hring] = 0, yielding εn = ε0 − 2γ cos(2πn/N)
with n = 1, . . . , N . For convenience, without loss of gener-
ality, we set the lattice constant to unity, and we consider
even values of N to allow for an antipodal lead configu-
ration. We also fix the position of one of the two leads
to 1, whereas the second lead is connected at j, the lat-
ter being restricted to 2 ≤ j ≤ N/2. The retarded Green
function of the problem, G = [(E+i0+)I−Hring−Σ]−1, is
given by the isolated ring Hamiltonian, Hring, and by the
self-energy due to the coupling to the external leads, Σ,
assumed to be energy independent (wide-band limit) [12].
According to the Fisher-Lee relation [13], the connection
of the retarded Green functions to the transmittance co-
efficient reads as t = −2iΓG1j where we have assumed
equal leads Σ = Σ11 = Σjj and Γ ≡ − Im(Σ). In order
to evaluate the transmittance, we need to calculate the
bare Green function G(Σ=0), and thus its cofactor C at
the lead positions. The Green function entering the trans-
mittance formula hence reads

G1j =
C1j

detQ
detG−1

(Σ=0) (5)

with

Q =

(
detG−1

(Σ=0) − ΣC11 −ΣC1j

−ΣCj1 detG−1
(Σ=0) − ΣCjj

)
. (6)

It is worthwhile to note that the above expression applies
to any system with atomic contacted leads. Using the sys-
tem Hamiltonian Hring, we can obtain the cofactor

C1j = γj−1TN−j + (−1)N−2γN−j+1Tj−2. (7)

Here, Tm is the determinant of the m × m tridiagonal
matrix whose diagonal and outer diagonals are E−ε0 and
γ, respectively, and is given by Tm = (ηm+1

+ −ηm+1
− )/(η+−

η−) with η± ≡ (E−ε0)±
√

(E − ε0)2 − 4γ2. Additionally,
one can get that η± ≡ γe±ik, where tan2 k ≡ 4γ2/(E −
ε0)2−1. Let us now define the two branch lengths as �1 =
j−1 and �2 = N−(j−1), so that �1 ≤ �2. The ratio of these
two lengths is then expressible as κ = �1/�2 = p/q with
p ≤ q being coprime integers. Note that there is a duality
symmetry when κ ↔ κ−1. The two integers define the
symmetry order n ≡ p + q for the device configuration, as
it necessitates an n-time rotation by an angle 2π/(κ−1+1)
to recover the original position of the leads.

After some algebra, we obtain a compact form for the
cofactor,

C1j ∝ sin(πβ/2) cos(πα/2). (8)

The suitable normalizations of the momentum α ≡ k(�1−
�2)/π and β ≡ k(�1 + �2)/π serve in measuring the com-
mensurability of the wavelength with the length differ-
ence between the two branches and the circumference of
the ring, respectively. It can be easily noticed that the
transmission reaches its zeros either for even-integer β’s
or for odd-integer α’s. The former corresponds to the
condition for eigenstates of the isolated ring given by
detG−1

(Σ=0) = γN [cos(πβ) − 1] = 0, while the latter oc-
curs at points of destructive interference at the nodes. It
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Fig. 2. Transmittance t in the complex plane for κ = 1/4,
evaluated in the momentum interval k�1 ∈ [π/5, π/2] in which
there exist two single zeros caused by an eigenstate at k�1 =
2π/5 and by destructive interference at k�1 = π/3. The inset
shows the behavior of cos φ a function of k�1/π.

is important to note that in the symmetric configuration
�1 = �2 (α = 0), transmission zeros due to destructive in-
terference cannot occur. Furthermore, those zeros in cor-
respondence of the isolated ring eigenstates can neither
be achieved in the case κ = 1, as it will be discussed in
the next section. It should also be stressed that the fac-
torization in equation (8) is a general feature of the ring
topology and does not depend on the particular choice of
lead self-energy studied here. The choice of the latter is
motivated by the wish to avoid spurious effects due to the
leads which might mask topology induced features [12].

Zeros in the transmission

First, we examine the characteristic zeros in the transmis-
sion associated with the eigenstates of the isolated ring
which are a sufficient condition for the phase jumps. To
this end, in order to show the absence of zeros in the sym-
metric case, we explicitely write down the determinant
of Q for κ = 1,

detQ|κ=1 = A(Σ, β) detG−1
(Σ=0) sin(πβ/2), (9)

with the prefactor A(Σ, β) not vanishing for the eigen-
states. Hence, the term det G−1

(Σ=0) sin(πβ/2) cancels the
numerator in equation (5) (after inserting Eq. (8)) and
does not yield any zero in the transmission. On the con-
trary, when κ < 1 and when the eigenstates condition
(even-integer β’s) and the constructive interference one
(even-integer α’s) are not simultaneously satisfied, such
cancellation does not occur, causing zeros in the transmis-
sion at the eigenstates. Furthermore, in the case κ < 1, the
phase difference can lead to destructive interference at the
lead positions, also resulting in zeros in the transmission.

Transmittance phase: Single zeros

We examine now the transmittance phase at the single
zeros in the transmission, located at certain k�1 in accor-
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Fig. 3. Transmission |t|2 as a function of momentum k�1/π.
The solid line represents the case κ = 1/3, and the dashed line
shows the symmetric case κ = 1 for comparison.

dance with either eigenstates or destructive interference.
As an example, we choose the length ratio as κ = 1/4, for
which an eigenstate occurs at k�1 = 2π/(4 + 1), whereas
k�1 = π/(4− 1) leads to destructive interference. For this
purpose, it is helpful to have a look at the transmittance
in the complex plane, which is presented in Figure 2 for
the momentum regime of k�1 ∈ [π/5, π/2]. (It should be
noted that k�1 can be changed by either changing the en-
ergy E or the position j of the second lead.) The trajectory
starts from the third quadrant and ends in the second
quadrant. Across the first zero occurring at k�1 = π/3,
the trajectory is traced from the third to the first quad-
rant, yielding a sign change both in real and in imagi-
nary part of the transmittance. On the other hand, for
the second zero at the eigenstate k�1 = 2π/5, the trajec-
tory passes through the origin from the second to the first
quadrant, and thus the sign change only occurs in the real
part of the transmittance. In both cases, when passing
through the single zero in the transmittance, a π jump
in ϑt occurs (see Fig. 2). Decomposing the transmittance
into real and imaginary part as Re(t) = cosϑ cosφ and
Im(t) = sin ϑ cosφ, we notice that the π jump achieved
by destructive interference is due to the sign change of
the common factor cosφ. However, this is not the case
for the π jump due to the eigenstate. As the inset in Fig-
ure 2 shows, the sign change in cosφ occurs only across
the transmission zero due to the destructive interference,
not at the zero due to the eigenstate. This is also con-
firmed by the evaluation of transmittance to reflectance
ratio, t/r = cotφ, where the reflectance is determined in
terms of the Green function as r = 1 − 2iΓG11. It indi-
cates that the π jump in ϑt at the transmission zero due
to the eigenstate is accompanied by a π jump in ϑ.

Transmittance phase: Double zeros

Finally, we examine the cases in which the system symme-
try allows two characteristic zeros to coincide. In Figure 3,
we present the transmission for κ = 1/3 as solid line, and
that for the symmetric case κ = 1 as dashed line, in which
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Fig. 4. Transmittance phase ϑt/π versus momentum k�1/π,
shown for κ = 1/3 as solid line. The transmittance phase ex-
hibits no jump, even across the (double) zero in the transmis-
sion occurring at k�1 = π/2. For comparison, the transmittance
phase for κ = 10/31 is presented as dashed line (in both cases,
ε = 10−7 is used). The inset shows the transmittance coeffi-
cient in a complex plane near the zero in the transmission for
κ = 10/31.

the resonance lines at k�1 = nπ are persistent for the
asymmetric probing. It is of interest to notice that the ze-
ros at k�1 = (2n + 1)π/2 correspond to the condition for
destructive interference as well as for the eigenstates, i.e.,
for double degenerated zeros in the transmission.

We now investigate what happens to the transmittance
phase at the double zeros, for the case κ = 1/3, in com-
parison to a case of higher-order symmetry, for example
κ = 10/31. The latter case results in two nearby zeros in
the transmission at k�1/π = 10/21 and k�1/π = 20/41.
Figure 4 displays, as solid line, the transmittance phase
for the case κ = 1/3, and, as dashed line, that for the case
κ = 10/31. For the latter case, the evolution of the trans-
mittance coefficient in the complex plane is shown in the
inset of Figure 4. Imagining the radius of the closed loop
shrinking as the two characteristic zeros merge into a sin-
gle point, makes it easy to infer that the transmittance for
κ = 1/3 displays a cusp-like profile. This singular behav-
ior of the transmission can be traced out by introducing
k̃ = k + iε with a small ε. We evaluate the transmittance
phase with ε = 10−7; Figure 4 displays the continuous evo-
lution of the transmittance phase across the double zero
(k�1 = π/2). As noted already, at the double zero there
is no sign change of cosφ, and therefore, we can identify
the transmittance phase with the Friedel phase (up to an
additive constant). The general condition for this iden-
tity to occur is that k�1 is simultaneously an odd-integer
multiple of π/(κ−1 − 1) and an even-integer multiple of
π/(κ−1 + 1), so that the corresponding symmetry order
is characterized by n = p + q = 0 (mod 4). In Figure 5,
we present two corresponding examples of configurations
appropriate for the observation of double zeros.

Conclusions

In summary, we have considered a one-dimensional ring
with two external leads attached, where the two branch

n� 12 n� 16

(a) (b)
Fig. 5. Schematic configurations for the occurrence of double
zeros in the transmission for different symmetry orders (a) n =
12 and (b) n = 16. To identify the Friedel phase with the
transmittance phase, the outgoing leads can be located at any
nodal points given by the crossings between the ring and the
standing waves, the latter drawn as dashed lines.

lengths �1 and �2 differ. With the length ratio defined as
κ = �1/�2 = p/q, the configurations of the ring exhibiting
smooth behavior of the transmittance phase, ϑt, together
with double zeros in transmission are found to have the
symmetry order n = p + q = 0 (mod 4). Furthermore,
we have pointed out two causes leading to π jumps in ϑt,
one of which being simply due to the destructive interfer-
ence at the external lead positions and followed by overall
sign change in t across the zeros. The other one, even
more interesting, is that asymmetric lead-positions allow
to probe eigenstates revealed by zeros in the transmission.
This is in contrast to the case of symmetric leads where
the eigenstates of the isolated system lead to a maximal
transmission.

Although the transmittance properties have been
already discussed quite generally for various kinds of scat-
terers [6], the main attention has been paid to the time-
reversal- and reflection-symmetry [5]. However, less atten-
tion has been paid to the effects due to configurational
symmetry of the lead which we have focused on. The ef-
fects revealed here are quite striking and are not observ-
able in the traditional symmetric setup κ = 1. A word of
caution should be spend since our analysis is based on lin-
ear chains and not on realistic quasi-onedimensional sys-
tems such as carbon nanotubes (CNT). However, numer-
ical calculations for a CNT-ring contacted by CNT leads
[14] indicate that the typical scenario depicted here is still
valid in a single-electron picture, although many features
become much more complex due to spurious effects of the
(energy dependent) leads. Therefore, we believe that our
predictions might probably be observable in pure carbon
set-up [7]. Finally, we think that our findings, besides be-
ing of theoretical interest from a fundamental point of
view, might also open some interesting directions to ap-
plicative purposes.
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